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A strongly unique best approximation m in a finite-dimensional subspace ."f of
a real normed linear space X to an element x E X 'Af is characterized by means of
a finite number of extremal points of the closed unit ball in the dual space X" This
result is applied to weak Chebyshev subspaces in C( n. '1990 Academic Pre",. Inc

1. INTRODUCTION

Let M of {O} be a finite-dimensional linear subspace of a real normed
linear space X, and let x be an element of X\.M. We recall that an element
mE M is called a strongly unique best approximation in M to x if there
exists a constant c > 0 such that

( 1.1 )

for all y in M. A first dual characterization of strongly unique best
approximations is due to Wulbert [10, 11]. More precisely, if F is the
duality mapping [2, Section 1.2.4] of X\ {O} into the family of all non
empty l\'*-compact convex subsets of the dual space X* of X defined by

F(:::) = {fEX*: II.n = 1 andt'(:::)= 11::: 11},

then we have

:::EX\,{O}, (1.2)

WULBERT'S THEOREM. An clement mE M IS a strongly unique best
approximation in M to x EX\M it' and only it'

sup f(y»O
(en\' ml

for all y of 0 in M.
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In view of the Krein Milman Theorem. one can easily deduce that the
Wulbert Theorem remains true if we replace F(x -111) by the set

Ext[F(x -111)J = F(x - m) n Ext[B(X*)]. ( 1.3)

where Ext [A J is the set of all extremal points of a set A and B( X*) is the
closed unit ball in X*. The sets F(x--m) and Ext[F(x-m)J can be
uncountable. which is very unfavourable in applications of strong unique
ness. Therefore. in this paper we characterize a strongly unique best
approximation 111 in M by means of a finite number of functionals from the
set Ext[F(x --111)]. This characterization is both a counterpart of the finite
dual characterization of best approximations and a refinement of the
characterization of strongly unique best approximations by elements of
finite dimensional subspaces JH in the space X = C( T) due to Singer [9.
Theorem 1.11 J and Bartelt and McLaughlin [3. Theorem 6 J. respectively.

2. MAIN RESULTS

Let us suppose additionally that the dimension of subspace M is equal
to n? I. A sequence of functionals U: );: in X* is said to be lineaI'll' sgn
dependent on M if

(t:Xif~) (M) = {O} = sgn (.(0 = '" = sgn :X n • (2.1 )

where sgn:x = 0 if :x = 0 and sgn:x = :x/I:xl if :x i= O. In the following, we shall
use the symbols ()ii' span(A) and colA) to denote the Kronecker delta. the
linear space spanned by a subset A of X and the convex hull of A, respec
tively.

LEMMA 2.1. A sequence oj functionals U; );; in X* is linearly sgll
dependent Oil an n-dimensional linear subspace M of X i( and only if the
sequence U;)'i is linearly independent on M and

a'here (l11,)'i is the basis in M such that

i = 1•... , n,

i, j= I ...., n.

(2.2)

(2.3)

Proo{ If a sequence U;);; in X* is linearly sgn-dependent on M, then
functionals II' ..., I, are linearly independent on M. Indeed. if we have

(2.4 )
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withexo = 0, then (2.1) implies that eachex i is equal to zero. Hence there
exists a basis (my" in M satisfying conditions (2.3). Since dim M* =

dim M, it follows that functionals Io, ...,I, are linearly dependent on M.
This means that identity (2.4) holds for some ex i , not all equal to zero. By
(2.1) we have

sgn ex o = ... = sgn ex" =1= O.

Moreover, inserting m j EO Minto (2.4) and using (2.3), we get

(2.5)

j = I, ... , n. (2.6)

This in conjunction with (2.5) gives (2.2), which completes the proof of
necessity. Conversely, suppose that conditions (2.2)-(2.4) are satisfied.
Then it follows from (2.6) that implication (2.1) is true, which completes
the proof. I

Now one can proceed to establish a finite extremal characterization of
strongly unique best approximations, which is the main result of this paper.
This characterization uses the notion of the algebraic interior oj'
co {g I' ... , gd (g, EO X*, k?; 1) which consists of all functionals I of the form

k

I= L i'ig"
j---1

where i., > 0 for all i and lj + ... + i' k = I. Note that the algebraic interior
of the set co {g I } is eq ual to {g I }.

THEOREM 2.1. An element m EO M is a strongly unique best approximation
in an n-dimensional linear subspace M oj' a realnormed linear space X to an
element x EO X\M if and only if there exist functionals fI> ...,I" g I •..., g k EO

Ext[F(x - m)] (1 ~ k ~ n) such that (f,);; is linearly sgn-dependenz on Mlcn'
some functional fo in the algebraic interior of co {g I' ... , g k }.

Proof If there exists a sequence (.f,)~ of linearly sgn-dependent on M
functionals in the convex hull co(Ext[F(x-m)J), then by Lemma 2.1 we
have

for all y = L;'~ I exim, =1= 0 in M. This in conjunction with the Wulbert
Theorem implies that m is a strongly unique best approximation in M to
x. Conversely, suppose that m is a strongly unique best approximation in
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M = span {x I' "', X,,) to x E X\M. Since this is equivalent to the fact that 0
is a strongly unique best approximation in M to :: = x - m i= 0, we may
assume without loss of generality that m = O. Hence we conclude, as in the
proof of Bartelt and McLauglin's theorem [3, Theorem 6J, that
OEco(Ext[T(x)J) but O¢Ext[T(x))J, where the compact set T(x)c[R" is
the image of the w*-compact convex set F(x) c x* under the linear w*
continuous mapping

U: X* 3f -> (./(x 1), ... , f(x,,)) E [R".

Therefore, it follows from the Caratheodory Theorem [4, p. 17 J that 0 E IR"
can be expressed in the form

I'

0= I Ai}'i;
i~ 0

YiE Ext[T(x)], (2.7)

where Ai> 0 for all i,)o + ... + i.p = 1 and p (1 ~ p ~ n) is the minimal
integer for which identity (2.7) holds. By the proof of Caratheodory
Theorem [4], the minimality of p implies that exactly p points, say
YI' ..., }'p, are linearly independent. Multiplying both sides of (2.7) by vector
a=(oxt. ..., ox,,), and next using the fact that li=(./dxl), ...,fli(X,,)) for
some functional fli in Ext[F(x)J (since Ext[T(x)J = Ext[U(F(x))] c

U(Ext[F(x)J), see [7, p. 401J), we obtain

I'

I i·Jli(Y)=O
i~O

(2.8)

for all Y = I;'~ I oxix i E M. By minimality of p and linearity of U we conclude
that functionals Ill' ... , III' are linearly independent on M. Clearly, these
functionals are also linearly independent on any p-dimensional linear
subspace L I such that M = L I EB M I is a direct sum of L I and the
(n - p)-dimensional subspace M I defined by

p p

M] = n {YEM:/dy)=O}= n {YEM:/I'(Y)=O}, (2.9)
i= I i=O

where the last equality follows directly from (2.8). Moreover, if mIt. ... , m lp

is a basis of L I satisfying the conditions

i, j= 1, ..., p,

then in view of (2.8) we get 110(m I}) = - ijAo < 0 for all j. Hence by
Lemma 2.1 functionals 110' Ill' ... , III' are linearly sgn-dependent on L I'

which completes the proof in the case when p = n, i.e., when L 1 = M and
M l = {O}. In particular, it follows that the necessity part of our theorem is
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true in the case when n = 1. Now one can complete the proof by inducing
on n = dim M. Indeed, suppose that the necessity is true for any subspace
of dimension less than n. Since m = 0 is a strongly unique best appro.xima
tion in M to x E X\M, it follows from (1.1) that 111 = 0 is also a strongly
unique best approximation in the q-dimensional subspace M I defined by
(2.9) to the element x, where q = n- p < n. Clearly, we can assume that
q ~ I and apply the induction hypothesis to M I in order to get functionals
f~I' .. ·,/~'I' gl' ... , gkEExt[F(x)J (1 ~k ~q) such that (j~J;i is linearly sgn
dependent on M I for some functional I~o in the algebraic interior of
co{gl' ... , gd. Now Lemma 2.1 implies that (f~J'{ is linearly independent
on M I and hence on M. Define the space L j of dimension p by

'I

L , = n {vEM:/~,(Y)=O}.
i I

(2.10)

Since Lin M I = {O}, we have M = L I ~ M I' and so functionalsllo , ... , fll'
are linearly sgn-dependent on L I' Consequently one can choose bases
(mlj)j' and (m 21 )'{ for L I and M I , respectively, so that I;,(m ,l )=<\

(v= I, 2) for all i,j. By (2.9) (2.10) functionals fll' ...,fII"/~I' ...,/~'I are
linearly independent on M = L I ~ M I' and

I~i(m!,j)= <),!I <)Il; v, Jl = I, 2, (2.11 )

for all i, j. On the other hand, by (2.8 )-(2.9) we have flo = <0 on MI'
Moreover, in view of Lemma 2.1, we get flO(ml,)<O and 1~0(1I12r)<0,

whenever I ~ s ~ p and I ~ I' ~ q. Thus for each if> 0 sufficiently small, the
functional I;) = (I - if) flo + if/20 satisfies 1;)(m 2r ) = ,9f~0(m2r) < 0 and

This in conjunction with (2.11), Lemma 2.1, and the fact that 120 belongs
to the algebraic interior of col gl, ... , gk] implies that functionals

1;1> fll' .", fl l " I~I' ..., I~'I are linearly sgn-dependent on M, where I;) is a
convex combination of k + I ~ n elements fill> gl' ... , gk E Ext[F(x)J with
positive coefficients. I

Let us note that a corollary of Theorem 2.1 is the following "0 in the
convex hull" characterization of strongly unique best approximations,
which is a counterpart of the "0 in the convex hull" characterization of best
approximations due to Singer [9, Theorem 1.11].

COROLLARY 2.1. An element mE M is a strongly unique hcst approxima
tion in an n-dimensional linear suhspace M of a rcal normed linear spacc X
!iI all element x E X\ M if and onlv if!here exis! jilf1ctionals fl, .. ., I, ' k E
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Ext[F(x-m)] (1 ~k~n) and positive numhers ;'1' ... , ;,", k with ;'1 + ... +
;," + k = 1 such that (I l'; is linearly independent on M and

lit-/.:

(2.12)
i -- 1

j(ir all y in M.

'Proof: If m is a strongly unique best approximation in M to x E X\M
then it follows from the definition of sgn-dependence and Theorem 2.1 that
(2.12) holds, whenever functionals /1 , ... , I" 1;, + I = g I , ... , I, "k = g k are as
in Theorem 2.1. Moreover, by Lemma 2.1 the sequence (iT; is linearly
independent on M. On the other hand, we can set

fl +k

i -'-'- Ill- I

with f3,=i)UII+I+'" +)," ,d· By (2.12) we have 1;)(mj)<O for
j = 1, ... , n, where (mj)'; is the basis of M defined by conditions (2.3). Hence
one can apply Lemma 2.1 and Theorem 2.1 in order to complete the
proof. I

It is clear that this corollary provides much more precise characteriza
tion of strong uniqueness than the Wulbert Theorem and Theorem 6
of Bartelt and McLaughlin [3]. A usefulness of TheBrem 2.1 and
Corollary 2.1 depends on the structure of sets Ext [F( z)] = F( z) n

Ext[B(X*)] with z i= 0 in X This structure is especially simple in the case
when X = C( T) is the Banach space of all continuous real-valued functions
defined on a compact Hausdorff space T with the uniform norm. Indeed,
by the well-known characterization [5, p. 441, Lemma 6] of
Ext[B(C*(T))], we have

Ext[F(z)] = {sgn[z(t)] (),: t E ext(z)}

for all zi=O in C(T), where ext(z) = (tE T: Iz(t)1 = Ilzll} and functionals 6[
on C( T) are defined by 6, Y = y( t), Y E C( T). Clearly, a sequence of func
tionals CTI6", ... ,CTII+k6'nt' (CT,=sgn[z(t,)], t,ET) contains n functionals
linearly independent on M = span {x 1, ... , X II} C C( T) if and only if the rank
of matrix [xj(t,)] = [Xj(t,)]7~ I. ;'~t is equal to n. Thus Corollary 2.1
yields

COROLLARY 2.2. A function mE M is a strongly unique hest approxima
tion in an n-dimensional subspace M = span {x 1, ... , XII} of C( T) to a function
x E C( T)\M if and only if there exist points t l , ... , til + k E ext(z) (I ~ k ~ n
and z=x-m) such that rank [x;(t;)] =n and
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(A) the system of linear equations

J1+k

L )., sgn[z(t')J xj(t i ) = 0;
i= 1

has a positive solution ), l' ...• ;'11 + k'

j= 1•..., n.

219

Now suppose additionally that T is a compact subset of the real line.
Then an n-dimensional subspace M=span{xj, ...,x ll } of C(T) is called
weak Chehyshev, if there exists an integer (J EO { - 1, I} such that
(J det [Xj (t,) J ;;:: 0 for all points t I < ... < til in T. For such subspaces M, the
necessity part of Corollary 2.2 can be established in a more precise form.

COROLLARY 2.3. A function m EO M is a strongly unique hest approxima
tion in an n-dimensional weak Chehyshev subspace M = span {x 1...., XII} of
C( T) to a function x EO C( T)\M if and only if there exist points
t1< .. ·<tll +k in ext(z) (I~k~n and z=x-m) }Dr which
rank[xj(t,)J = n and conditions (A) and

(B) there exist integers I ~ko< ... <kll~n+k such that

i = 1..... n.

are satisfied.

Proof From Theorem 7 of Gantmacher and Krein [6, Section 5.2J it
follows that any solution 1'1 sgn[z(tl)], ..., Ic ll +k sgn[z(tn+k)J U, > 0) of the
system of linear equations given in (A) has at least n sign changes. Hence
one can apply Corollary 2.2 to finish the proof. I

COROLLARY 2.4. A function m EO M is a strongly unique best approxima
tion in an n-dimensional weak Chehyshev subspace M = span {x l' ... , XII} of
C( T) to a function x EO C( T)\M if and only if there exist points
t l < ... <tn+k in ext(z) (1 ~k~n and z=x-m) such that conditions (A)
and

(C) there exist integers 1~ k 1 < ... < k n~ n + k such that

and i= 2, ... , n,

are satisfied.

Proof In view of Corollary 2.3 it is sufficient to prove condition (C)
under the assumption that m is a strongly unique best approximation in M
to x EO C( T)\M. For this purpose, we apply Corollary 2.3 to show that the
vector (m(t,), ..., m(tll+k)) is a strongly unique best approximation in Mn,k
to (x(td, .", X(tll+k)), where M Il . k C C(S) is the n-dimensional weak



220 RYSZARD SMARZEWSKI

Chebyshev subspace of all functions in M with domains restricted to the set
5 = {t I' ... , tIl + k} of points t i defined as in Corollary 2.3. Now, if condition
(C) is not satisfied then one can construct a vector (l' I .... , )'" + dE
M"J {OJ such that [x(ti)-m(ti)J.l'i:::;O for all i, which leads to a con
tradiction with the Wulbert Theorem. We omit details of this construction,
since it is already given in [8, pp. 2730]; but note that the Nurnberger's
construction can be considerably simplified, since condition card
(5) = n + k implies that all minima and maxima occurring in this construc
tion are attained. I

In order to compare Corollaries 2.3-2.4 with a celebrated theorem due
to Nurnberger [8, Theorem 1.4], we first recall that linearly ordered dis
joint subsets 1'1 < ... < 1'j of ext(.::) are called alternating eXlremal sels of
.::, if .::(t, I) '::(t') < 0 (i = 2, ... , j) for all points II' E 1'1' (p = i-I, i). Next, we
divide points II .... , I" + k E ext(.::) occurring in Corollaries 2.3 2.4 into n + p
extremal sets 1',:

(II' ... , I" + k } = 1'1 U '" u 1'" + I"

Clearly, by condition (B) we have I:::; p:::; k :::; n. Now one can compare
Corollaries 2.3 2.4 with [8, Theorem 1.4 ] and derive the following conclu
sIOns:

(a) The number of alternating extremal sets 1', is less than or equal
to 2n in Corollaries 2.3-2.4, while it is only finite in Theorem 1.4.

(b) Each set T, may consist of at most n elements and it may be
infinite, respectively. Therefore, our corollaries give the first finite extremal
characterization of strong uniqueness for weak Chebyshev subspaces.

(c) It is striking that Corollaries 2.3-2.4 enable us to verify the strong
uniqueness by examining only sequences of n + k (I :::; k :::; n) points from
ext(.::).

(d) A rather complicated determinant condition (2b) presented in
Theorem 1.4 is replaced by condition (A) in Corollaries 2.3 2.4 which can
be easily verified by using computers.

(e) The proof of Corollaries 2.3 2.4 is comparatively very simple and
short.

Now, following Ault el al. [I] suppose that M = span {x I' ... , x,,} is an
interpolaling suhspace of dimension n of a real normed linear space X. This
assumption is equivalent [I, Theorem 2.1] to the fact that

Do :=det[f~(.\)] #0

for each set of n linearly independent functionalsfl' ... ,/;, in Ext[B(X*)].
Hence it follows that functionals Ilo, ... ,flpEF(x)nExt[B(X*)] (I:::;
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p ~ n) constructed in the proof of our Theorem 2.1 are linearly dependent
on M if and only if p=n. Thus we have p=n in (2.8) and k= I in
Theorem 2.1. Additionally, by the Cramer's rule the elements (my; of M,
defined by the interpolating conditions (2.3), are equal to

m;= I (-IY+/(Du/DolxF
I~ I

where Du is the minor of j~(.\) in Di=det[f~(xl')]::·~o. ;:~I with v#-i.
Therefore, by applying Lemma 2.1 and Theorem 2.1, we get

COROLLARY 2.5. An element mE M is a strongly unique hest approxima
tion in an n-dimensional interpolating suhspace M = span {x I' ... , x,,} of a
real normed linear space X to an element x E X\ M if and only if there exist
functionaL~fo, ... ,.1;, in Ext[F(x-ml] such that

(-Ir I DdDo<O; i= I, ... , n. (2.13 )

Remark 2.1. By the definition of linear sgn-dependence it is clear that
Theorem 2.1 and hence Corollary 2.5 remain true if we replace functionals
.I~, ...,f" by .I~(O), ... , .I~("I' where {o-(O), ... , (j(n)} = {O, ... , n }.

It should be noted that Corollary 2.5 is also an immediate consequence
of [I, Theorems 4.1 and 6.1]. On the other hand, the "strong uniqueness"
Theorem 6.1 is an immediate consequence of [I, Theorem 4.1] and
Corollary 2.5. In the particular case X = C( T), the classes of all inter
polating and Haar subspaces M coincide [I, Theorem 3.2]. We recall that
an n-dimensional subspace M = span {x l' ... , x,,} of C( T) is called a Haar
suhspace if det[x;(t j )] #-0 for all pairwise distinct points t l , ..• , t" in T. In
this case, we have additionally .I; = sgn [z(t;)] (j I, (z = X - m) and

D[ = Gi n sgn[z(t/J],
i# I~O

where G[ = det[xl'(tv)]::'~ o. ;: ~ 1 with v#- i. Hence the inequalities (2.13) can
be rewritten in the form

(-I r 1 (GdGol sgn[z(t;) z(tol] < 0; i = I, ... , n. (2.14 1

Moreover, if M is an n-dimensional Haar subspace of C[a, h]l, then the
functionals I=sgn[z(t;)]1 1\ in Corollary 2.5 can be rearranged so that
to< ... <t", which implies that GdGo>O for all i [4]. Hence
Corollary 2.5 combined with (2.14) gives the classical alternation charac
terization of (strongly unique) best approximations in this case.
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Finally, we note that the inequality k ~ n occurring in Theorem 2.1
cannot be improved in general.

EXAMPLE 2.1. Define the n-dimensional subspace M of the space
C[O,n] by M=span{xl, ... ,xll }, where x,(l)=s(t-i+I); O~l~n, and
the function .1': ~ -+ [ - 1, I] is equal to

{

-41,

4(t - *),
s(t) = -

-4(.1--1 ),

O.

if 0 ~ I ~~,

if ~ < l ~~,

if ~ < I ~ I,

otherwise.

Then we have Ilx - yll -llxll = Ilyll, whenever x(t) == I on [0, n] and y EM.
Hence m = 0 is a strongly unique best approximation in M to this function
x. It is clear that functionalsI, g,EExt[F(x)] U= I, ... , n) defined by

g,(y) = y(i -~) and I(y)=y(i-~), YEC[O,n],

are admissible in Theorem 2.1. On the other hand, it is not difficult to
show that this is no longer true for any functionals II' ...,I" g I' ... , g k E

Ext[F(x)] in the case k < n.
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